

Subscriber access provided by ISTANBUL TEKNIK UNIV

Studies on Terpenoids and Steroids, 25. Complete Hand C-Nmr Spectral Assignments of Salaciquinone, a New 7-Oxo-quinonemethide Dinortriterpenoid

Yasuhiro Tezuka, Tohru Kikuchi, Bhavani Dhanabalasingham, Veranja Karunaratne, and A. A. Leslie Gunatilaka

J. Nat. Prod., 1994, 57 (2), 270-276• DOI: 10.1021/np50104a012 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50104a012 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

STUDIES ON TERPENOIDS AND STEROIDS, 25.¹ COMPLETE ¹H-AND ¹³C-NMR SPECTRAL ASSIGNMENTS OF SALACIQUINONE, A NEW 7-OXO-QUINONEMETHIDE DINORTRITERPENOID

YASUHIRO TEZUKA, TOHRU KIKUCHI,*

Research Institute for Wakan-Yaku, Toyama Medical & Pharmaceutical University, Sugitani 2680, Toyama 930-01, Japan

BHAVANI DHANABALASINGHAM, VERANJA KARUNARATNE and A.A. LESLIE GUNATILAKA*.²

Department of Chemistry, University of Peradeniya, Peradeniya, Sri Lanka

ABSTRACT.—A new 7-oxo-quinonemethide dinortriterpenoid, salaciquinone [1], and a known quinonemethide dinortriterpenoid, isoiguesterin [3], were isolated from the root bark of *Salacia reticulata* var. β -diandra (Celastraceae). The structure elucidation of salaciquinone was based on detailed 2D and nOe-difference nmr spectroscopy, leading to the complete assignment of the ¹H- and ¹³C-nmr spectra and revision of some ¹H-nmr spectral assignments made previously for the related 7-oxo-quinonemethide nortriterpenoid, dispermoquinone [2]. Complete ¹H- and ¹³C-nmr spectral assignments of isoiguesterin were also made, also leading to revision of some ¹³C-nmr assignments previously made for this compound.

In our continuing interest in the triterpenoids of Celastraceae (2-4) and their nmr spectral studies (5-7), we have carried out a complete ¹H- and ¹³C-nmr assignment of salaciquinone [1], a new 7-oxo-quinonemethide dinortriterpenoid encountered in the outer root bark of Salacia reticulata Wight var. B-diandra. Although the related 7-oxoquinonemethide nortriterpenoid, dispermoquinone [2], has been reported previously, only partial assignment of the 100 MHz¹H-nmr spectrum has been made (8) and, to our knowledge, no ¹³C-nmr spectral data have been published. ¹H-¹H COSY, ¹H-¹³C HETCOR, HMBC (proton-detected long-range heteronuclear chemical shift correlation spectroscopy) and nOe difference spectra, recorded at 400 MHz, enabled us to assign completely the ¹H- and ¹³C-nmr spectra of salaciquinone [1] and to revise some ¹H-nmr assignments made previously for the related 7-oxo-quinonemethide, dispermoquinone [2] (8). The isolation of 1 constitutes the second report of the natural occurrence of a 7oxo-quinonemethide. Also isolated was isoiguesterin [3], which has previously been reported from Salacia madagascariensis (9). Detailed ¹H- and ¹³C-nmr analysis with the aid of 2D techniques and comparison with the nmr data recently reported for pristimerin [4] led to the complete assignment of the 1 H-nmr data and the revision of some 13 C-nmr assignments previously made for 3. Previous studies on S. reticulata have resulted in the isolation of gutta-percha (10), sitosterol (10), pristimerin (10), mangiferin (11), 21α , 26dihydroxy-D:A-friedo-oleanan-3-one (epi-kokoondiol) (12) and 3-hydroxy-2-oxo-29nor-D:A-friedo-oleana-3(4),20(30)-dien-4-al (salacenonal) (13) from the root bark, and iguesterin, pristimerin and epi-kokoondiol from the stem bark (14).

RESULTS AND DISCUSSION

Chromatographic fractionation of the hot hexane extract of the outer root bark of S. reticulata var. β -diandra afforded salaciquinone [1], isoiguesterin [3], and β -amyrin. The molecular formula of salaciquinone was determined to be C₂₈H₃₆O₃ by hrms. The 11 degrees of unsaturation consisted of six multiple bonds {¹³C-nmr peaks of two C=O [δ

¹For Part 24, see Premakumara et al. (1).

²Address correspondence to this author at Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0212.

200.7 (s), 181.2 (s)] and four C=C [δ 162.2 (s), 148.8 (s), 146.6 (s), 140.9 (s), 131.8 (d), 119.7 (d), 117.2 (s), 107.8 (t)]}; consequently five rings were present. The uv spectrum of salaciquinone suggested the presence of a chromophore different from pristimerin [**4**] (15)³ but similar to that reported for dispermoquinone [**2**] (8). The ir spectrum showed absorption bands characteristic for H-bonded OH (3420 cm⁻¹), quinonoid CO (1672 cm⁻¹) and H-bonded quinonoid CO (1626 cm⁻¹) groups. Based on ¹H-¹H COSY, ¹H-¹³C HETCOR, HMBC and nOe-difference nmr experiments, the structure **1** was established for salaciquinone. The ¹H- and ¹³C-nmr spectral assignments for salaciquinone are summarized in Table 1.

In contrast to pristimerin-type quinonemethides (5), and phenolic nortriterpenoids (6), salaciquinone had two doublets at δ 6.36 and 6.39 ppm (J=1.5 Hz) in the low-field region of its ¹H-nmr spectrum. These signals were due to the protons of the quinonemethide system and were assigned to H-1 and H-6, respectively with the aid of the HMBC spectrum (see below). The two broad singlets at δ 4.61 and 4.60 ppm suggested the presence of an exomethylene group in ring E (see below) as in isoiguesterin [3] (9). Further evidence for this structural moiety came from the ¹³C-nmr spectrum, which had signals at δ 107.8 (t) and 148.8 (s) ppm. The high-field region of the ¹H-nmr spectrum consisted of five methyl singlets at δ 2.10, 1.30, 1.29, 1.14, and 1.00 ppm in addition to a complex pattern at δ 1.00–2.40 ppm due to methylene and methine protons. The 3H singlet at δ 2.10 ppm was assigned to the C-4-Me on the quinonemethide system (5). All the remaining signals, including the signals due to α - and β -protons in the ring system, were analyzed with the help of the ¹H-¹H COSY spectrum (which displayed all the correlation peaks corresponding to geminal, vicinal and long-range couplings) and by comparison with the data reported by us for pristimerin [4] (5). The coupling constant(s) for each proton was obtained from the 1D-spectrum and by careful analysis

³The structure proposed for prostimerin in this reference was later corrected to [4] (16).

Position	,H _p	¹³ C ^c	¹ H- ¹ H COSY	HMBC (¹ H)
1	6.36 (1H, d, 1.5)	119.7 (d)	H-6	
2	_	181.2 (s)	_	3-OH
3	_	146.6 (s)	_	H-1, 3-OH, H-23
4	—	117.2 (s)	_	3-OH, H-6, H-23
5	-	140.9 (s)	—	H-1, H-23
6	6.39 (1H, d, 1.5)	131.8 (d)	H-1	
7	_	200.7 (s)	_	H-8
8	2.91 (1H, s)	57.8 (d)	H-25	H-6, H-25, H-26
9	—	41.9 (s)	_	H-1, H-8, H-25
10	—	162.2 (s)	—	H-6, H-8, H-25
11 a	2.21 (1H, td, 13.5, 4)	31.9 (t)	Η-11β, Η-12α, Η-12β, Η-25	H-25
11 β	1.74 (1H, ddd, 13.5, 4, 2.5)		Η-11α, Η-12α, Η-12β	—
12 α	1.72 (1H, ddd, 13.5, 4, 2.5)	28.5 (t)	Η-11α, Η-11β, Η-12β	H-27
12 β	1.55 (1H, td, 13.5, 4)		Η-11α, Η-11β, Η-12α, Η-27	—
13	_	40.5 (s)	—	H-8, H-19α/β, H-26, H-27
14	_	39.6 (s)	—	H-8, H-26, H-27
15α	1.32 (1H, td, 13.5, 6)	27.0 (t)	Η-15β, Η-16α, Η-16β	H-26
15β	2.04 (1H, ddd, 13.5, 6, 2)		Η-15α, Η-16α, Η-16β	_
16α	1.25 (1H, ddd, 13.5, 6, 2)	35.7 (t)	Η-15α, Η-15β, Η-16β	H-28
16β	1.87 td, (13.5, 6)		Η-15α, Η-15β, Η-16α	—
17	_	31.3 (s)	—	H-16β, H-22α, H-28
18β	1.63 (1H, t, 4)	44.4 (d)	H-19α/β, H-2 7	H-19α/β, H-27, H-28
19α/β	2.37 (2H, br d, 4)	29.9 (t)	H-18, H-30	H-30
20	_	148.8 (s)	_	Η-19α/β
21a	2.19 (1H, ddd, 13.5, 5, 2.5)	30.7 (t)	Η-21β, Η-22α, Η-22β	H-19α/β, H-30
21β	2.34 (1H, br td, 14, 6)		Η-21α, Η-22α, Η-22β, Η-30	—
22α	2.01 (1H, td, 13.5, 5)	37.9 (t)	Η-21α, Η-21β, Η-22β	Η-28, Η-16β
22β	1.14 (1H, br dd, 13.5, 5.5)		Η-21α, Η-21β, Η-22α	—
23	2.10 (3H, s)	10.4 (q)	-	—
25	1.30 (3H, s)	29.9 (q)	H-8, H-11α	H-8
26	1.29 (3H, s)	14.7 (q)	H-27	H-8
27	1.00 (3H, s)	18.0 (q)	H-12β, H-18, H-26	-
28	1.14 (3H, s)	31.2 (q)	_	Η-16β, Η-22α
30	4.61, 4.60 (2×1H, br s)	107.8 (t)	H-19α/β, H-21β	Η-19α/β
ОН	6.94 (1H, s)			

TABLE 1. ¹H-,¹³C- and Two-Dimensional Nmr Spectral Data for Salaciquinone [1].^{*}

⁵Spectra were recorded in CDCl₃ at 399.78 MHz (¹H nmr) and 100.54 MHz (¹³C nmr); chemical shifts are reported in ppm relative to TMS.

^bMultiplicity and coupling constant(s) in Hz in parentheses.

'Multiplicity of carbon signals (in parentheses) were determined by the DEPT method.

of the fine structures of the correlation peaks in the ¹H-¹H COSY spectrum. The diagnostic correlations observed are summarized in Table 1.

The HMBC spectrum of salaciquinone along with the detailed analysis of the ¹H-¹H COSY spectrum indicated a partial structure **A** (Figure 1) where the exomethylene group was present in ring E of the triterpenoid skeleton. The placement of the exomethylene group at C-20 was further supported by biogenetic arguments as quinonemethide triterpenoids isolated thus far contain at least one carbon residue attached to C-20 (see **2** and **3**).

The 2D nmr experiments (HETCOR and HMBC) along with the chemical shift arguments and signal multiplicities were useful in the assignments of the ¹³C-nmr spectrum of salaciquinone (Table 1). The protonated carbons in rings C, D, and E were assigned with the aid of ¹H-¹³C correlations in the HETCOR spectrum whereas the quaternary carbons in these rings were assigned with the help of the HMBC spectrum. The diagnostic HMBC correlations observed are summarized in Table 1.

Both ¹H- and ¹³C-nmr assignments in the 3-hydroxy-2,7-dioxo-3,5,10(1)-triene substructure (A and B rings) were aided by careful HMBC correlations, which are represented in Figure 2. Only some important correlations are discussed here. In the HMBC spectrum of salaciquinone, the 3-OH proton (δ 6.94 ppm, exchangeable with D₂O) shows correlations with C-2 (§ 181.2 ppm), C-3 (§ 146.6 ppm) and C-4 (§ 117.2 ppm). The presence of a cross-peak between C-3 and the ¹H-nmr signal at δ 6.36 ppm (J=1.5 Hz) suggests that the latter signal should be assigned to H-1. As expected, the ¹H-nmr signal at δ 6.36 shows a HMBC correlation with C-5 (δ 140.9 ppm). The ¹Hnmr doublet at δ 6.39 ppm (J=1.5 Hz) coupled to H-1 exhibits correlation peaks with C-4 (δ 117.2 ppm) and C-10 (δ 162.2 ppm). Therefore, this proton should be assigned to H-6. Thus, unambiguous assignments of H-1 (δ 6.36 ppm) and H-6 (δ 6.39 ppm) were possible suggesting that the assignments made by Martin (8) for these protons in dispermoquinone [2] should be reversed. The ¹H- and ¹³C-nmr signals due to the methylene and methyl groups in rings C and D were also assigned in a similar manner by the application of 2D nmr experiments. The relative dispositions of the methyl groups with respect to some methylene protons were determined with the help of nOe difference spectra, the results of which are summarized in Figure 3.

The physical and spectral data of the second isolated pigment compared well with those reported (9) for isoiguesterin [3]. The previous report of isoiguesterin contained only partial assignments of the ¹H- and ¹³C-nmr spectra. Further, the ¹³C-nmr assignments were based purely on comparisons made with the ¹³C-nmr spectral data obtained for celastrol [5] and the literature data for pristimerin [4]. As some ¹³C-nmr assignments for 4 have since been revised, it was thought desirable to carry out complete analysis of the ¹H- and ¹³C-nmr spectra of isoiguesterin [3] with the aid of 2D experiments.

The ¹H-nmr spectrum of isoiguesterin [**3**] showed signals due to an OH at δ 7.01 ppm (br s, exchangeable with D₂O, OH-3), five olefinic protons at δ 7.01 (dd, J=7, 1 Hz, H-6), 6.53 (d, J=1 Hz, H-1), 6.33 (d, J=7 Hz, H-7), 4.59 (br s, H-29), and 4.58 (br s, H-29), and five methyl groups at δ 2.21 (s, H₃-23), 1.47 (s, H₃-25), 1.29 (s, H₃-26), 1.16 (s, H₃-28), and 0.70 (s, H₃-27). These signals were readily assigned based on their chemical shift values and/or coupling constants. However, the remaining resonances in the region δ 1.1–2.4 ppm required more rigorous analysis which was done by the application of COSY and HETCOR experiments. These assignments are depicted in Table 2. The carbon chemical shifts of isoiguesterin [**3**], except for the quaternary

FIGURE 2. Selected HMBC Correlations of Salaciquinone [1].

FIGURE 3. Conformation of Salaciquinone [1] and Main Observed nOe's.

Position	¹ H ^b	¹³ C ^c	Position	¹ H ^b	¹³ C ^c
Position 1 2 3 4 5 6 7 8 9 10 11α	6.53 d (1) 	$\begin{array}{c} 119.6 (d) \\ 178.3 (s) \\ 146.0 (s) \\ 117.1^{k} (s) \\ 127.4^{k} (s) \\ 133.9 (d) \\ 117.9 (d) \\ 170.1^{k} (s) \\ 42.9 (s) \\ 165.0^{k} (s) \\ 33.9^{d} (t) \end{array}$	Position 16α 16β 17 18 19α 120 20 21α 21β 22β	1.43 ddd (13.5, 5, 2) 1.87 td (13.5, 5) 	$36.0 (t)$ $31.6 (s)$ $44.9 (d)$ $30.4^{k} (t)$ $147.9^{k} (s)$ $30.5^{k} (t)$ $36.9 (t)$
11β 12α 12β 13 14 15α 15β	2.20 ddd (13.5, 5, 2) 1.84 ddd (13.5, 6, 2) 1.74 ^e td (13.5, 6) 	29.7 (t) 41.3 (s) 44.8 (s) 28.4 ^k (t)	23 25 26 27 28 30 3-OH	2.21 s 1.47 s 1.29 ⁱ s 0.70 ⁱ s 1.16 s 4.58, 4.59 ^{h,i} each br s 7.01 br s	10.2 (q) 38.9 (q) 21.3 (q) 19.7 (q) 31.1 (q) 108.2 (t)

TABLE 2. ¹H- and ¹³C-Nmr Data for Isoiguesterin [3].^{*}

'Spectra were recorded in CDCl₃at 399.78 MHz (¹H nmr) and 100.54 MHz (¹³C nmr); chemical shifts are reported in ppm relative to TMS.

^bFigures in parentheses are coupling constants in Hz.

⁶Multiplicity of carbon signals (in parentheses) were determined by the DEPT method.

^{d-8}Long-range coupling was observed with H-25, H-27, H-26, and H-28, respectively, in the ¹H-¹H COSY.

^{h-i}Long-range coupling was observed between each other in the ¹H-¹H COSY.

^kPrevious assignments by Sneden (9) were revised.

carbons, were unambiguously assigned by the HETCOR experiment; quaternary carbons were assigned by comparison with our data (5) for pristimerin [4]. The resulting ¹³C-nmr assignments for isoiguesterin [3] are presented in Table 2. Our data suggest that the assignments made by Sneden (9) for C-3, C -4, C-5, C-8, C-10, C-11, C-15, C-16, C-19, and C-21 of isoiguesterin [3] need revision.

The biosynthetic origin of salaciquinone [1] may be of some interest. The cooccurrence of 7-oxo-quinonemethides with quinonemethides in some Celastraceae and Hippocrateaceae species prompts us to suggest their biosynthetic interrelationship as depicted in Scheme 1. As such, isoiguesterin [3] may be considered as the biosynthetic precursor of salaciquinone [1].

7-oxo-quinonemethides

SCHEME 1. Possible Biosynthetic Relationship Between Quinonemethides and 7-Oxo-quinonemethides.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—Mps were determined on a Kofler hot stage and are uncorrected. Tlc involved Si gel 60 GF; visualization was by uv (254 nm) and by spraying with acidified anisaldehyde followed by charring with heat. Flash chromatography involved Si gel of mesh 230–400 ASTM. Plc used 0.25 mm layers of Si gel GF₂₅₄. Optical rotations were measured in CHCl₃ solution at 27° with a Perkin-Elmer 241 polarimeter. Uv spectra were recorded for EtOH with a Shimadzu UV 160 spectrometer and ir spectra with a Shimadzu IR 408 spectrometer. The ms were recorded on a JEOL JMS-D 300 mass spectrometer with a direct inlet system.

NMR MEASUREMENTS.—Unless otherwise stated, instrumentation and conditions used for nmr measurements and processing were the same as those described previously (5). The nmr spectra were recorded as ca. 10% solutions in CDCl₃ at ambient temperature. NOe difference spectra were obtained with JEOL standard pulse sequence with 5 sec irradiation. HMBC spectra were measured using a pulse sequence (JEOL VHMBC sequence, J_{CH} =140 Hz, long-range J_{CH} =8.3 Hz) reported by Bax and Summers (17). The free-induction decays were acquired over 2048 data points and 2500 Hz for each of 128 values of evolution time. The raw data were zero-filled from 128 to 256 W in the second dimension (F₁) before double Fourier transformation.

PLANT MATERIAL.—Roots of *S. reticulata* var. β -diandra were collected at the Sinharaja Forest in Sri Lanka by Prof. S. Balasubramaniam of the Department of Botany, University of Peradeniya, Sri Lanka, where a voucher specimen has been deposited.

EXTRACTION AND ISOLATION.—Dried and powdered root bark (375.0 g) of *S. reticulata* var. β -diandra was sequentially extracted with hot hexane and C₆H₆. Evaporation of the hexane extract afforded a red solid (35.0 g). A portion (25.0 g) of this extract was subjected to flash chromatography over Si gel with solvent gradients ranging from hexane to hexane containing increasing amounts of EtOAc. A total of 75 fractions were collected and combined based on their tlc patterns. The combined fraction 6–7 (0.7 g) was further fractionated by flash chromatography with solvent gradients of C₆H₆/EtOAc to obtain a mixture of two compounds which were separated by prep. tlc (5% EtOAc in C₆H₆) yielding salaciquinone {1}(10 mg) and β -amyrin (122 mg). β -Amyrin, mp 193–195°; [α]D +88° (c=0.5) {lit. (18) mp 197–200°; { α]D +88°} was identified by comparison with an authentic sample (mmp, co-tlc, and co-ir). On standing the combined fractions 8–9 from the original flash chromatography precipitated an orange solid (2.3 g), which was further purified by repeated prep. tlc (20% Me₂CO in hexane) to afford isoiguesterin {3}(52 mg). The remaining column fractions contained complex mixtures of compounds, and further separation of these is currently being attempted.

SALACIQUINONE [1].—Orange crystals, mp 252–254° (CH₂Cl₂-MeOH); [α]D –130° (z=1.0); uv λ max (EtOH) 246 (log ϵ 3.50), 321 (3.92), 328 (3.88), 409 (3.50) nm; ir ν max (CHCl₃) 3420, 1672, 1654, 1626, 1461, 1453, 1423, 1301, 1251, 1196 cm⁻¹; ¹H and ¹³C nmr see Table 1; hreims, *m*/z [M]⁺ 420.2655 (calcd for C₂₈H₃₆O₃, 420.2664) (43), 286.1584 (calcd for C₁₈H₂₂O₃, 286.1569) (20), 231.1069 (calcd for C₁₄H₁₅O₃, 231.1021) (18), 218.0932 (calcd for C₁₃H₁₄O₃, 218.0943) (28), 216.0765 (calcd for C₁₃H₁₂O₃, 216.0786) (100).

ISOIGUESTERIN [**3**].—Orange plates, mp 198–200° (CH₂Cl₂) [lit. (9) 203–205°]; [α]D – 100° (c=0.1); uv and ir spectral data identical with those reported (9); ¹H and ¹³C nmr see Table 2; eims m/z [**M**]⁻ 404 (100), 389 (11), 253 (21), 241 (67), 202 (62), 201 (69), 200 (30), 187 (19), 147 (17), 107 (24), 95 (21).

ACKNOWLEDGMENTS

We thank the late Prof. S. Balasubramaniam for identification and supply of plant material and the University of Peradeniya for financial assistance.

LITERATURE CITED

- G.A.S. Premakumara, W.D. Ratnasuriya, S. Balasubramaniam, B. Dhanabalasingham, H.C. Fernando, M.N. Dias, V. Karunaratne, and A.A.L. Gunatilaka, *Phytochem. (Life Sci. Advan.)*, **11**, 219 (1992).
- 2. H.C. Fernando, A.A.L. Gunatilaka, Y. Tezuka, and T. Kikuchi, Tetrabedron, 45, 5867 (1989).
- 3. C.B. Gamlath, A.A.L. Gunatilaka, and S. Subramaniam, J. Chem. Soc., Perkin Trans. I, 2259 (1989).
- 4. A.A.L. Gunatilaka and W.R. Wimalasiri, J. Chem. Res. (S), 30 (1992).
- 5. A.A.L. Gunatilaka, H.C. Fernando, T. Kikuchi, and Y. Tezuka, Magn. Reson. Chem., 27, 803 (1989).
- 6. Y. Tezuka, T. Kikuchi, C.B. Gamlath, and A.A.L. Gunatilaka, J. Chem. Res. (M), 1901 (1989).
- 7. Y. Tezuka, T. Kikuchi, H.C. Fernando, and A.A.L. Gunatilaka, Phytochemistry, 32, 1531 (1992).
- 8. J.D. Martin, Tetrahedron, 29, 2997 (1973).

- 9. A.T. Sneden, J. Nat. Prod., 44, 503 (1981).
- 10. S.R. Sirimanne, E.H. Karunanayake, and K. Balasubramaniam, Proc. Inst. Chem. Ceylon, 10, 19 (1981).
- 11. S.R. Sirimanne, E.H. Karunanayake, and K. Balasubramaniam, Proc. Inst. Chem. Ceylon, 11, 9 (1982).
- A.A.L. Gunatilaka, B. Dhanabalasingham, V. Karunaratne, T. Kikuchi, and Y. Tezuka, *Tetrahedron*, 49, 10397 (1993).
- 13. Y. Tezuka, T. Kikuchi, B. Dhanabalasingham, V. Karunaratne, and A.A.L. Gunatilaka, Nat. Prod. Lett., in press.
- 14. V. Kumar, M.I.M. Wazeer, and D.B.T. Wijeratne, Phytochemistry, 24, 2067 (1985).
- 15. K. Nakanishi, H. Kakisawa, and Y. Hirata, J. Am. Chem. Soc., 77, 3169 (1955).
- 16. R. Harada, H. Kakisawa, S. Kobayashi, M. Musya, K. Nakanishi, and Y. Takahashi, *Tetrahedron Lett.*, 603 (1962).
- 17. A. Bax and M.F. Summers, J. Am. Chem. Soc., 108, 2093 (1986).
- S. Dev, A.S. Gupta, and S.A. Patwardhan, in: "Handbook of Terpenoids. Triterpenoids, vol. II." Ed. by S. Dev, CRC Press, Boca Raton, Florida, 1989, p. 327.

Received 28 July 1993